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Abstract. The thermodynamics of solvable isotropic chains with arbitrary spins is addressed by
the recently developed quantum transfer matrix (QTM) approach. The set of nonlinear equations
which exactly characterizes the free energy is derived by respecting the physical excitations at
T = 0, spinons and RSOS kinks. We argue the implication of the present formulation for a spinon
character formula of the levél= 2S5 SU(2) WZWN model.

1. Introduction

The 1D spin systems have been providing problems of both physical and mathematical interest.
Among them, there exists a family of solvable models of Heisenberg type withSsif2].
For instance, this includes,

L
H=1J Z{SiSHl + 7} 1)
i=1
J L
H=7 ;{S, Siv1 — (8;S+1)? + 3} )

asS = 1, 1, respectively.

Ground state properties as well as low-lying excitations have been elucidated by the
powerful machinery of solvable models, the Bethe ansatz equation (BAE). It has been
demonstrated in many contexts [3-5] that the underlying field theory is the Hexel2S
SU(2) WZWN model [6].

Although this 1D quantum model is equivalent to a 2D vertex model, physical excitations
have both the nature of vertex models and restricted SOS models. This was first demonstrated
in [7] based on th&-matrix argument. The space of states is identified in [8]. Through the
decomposition of crystals, these double features are made explicit in terms of ‘type of domain
walls’ and ‘type of domain’. There are independent justifications for this: the double feature
in the spectral decomposition is shown by the path space approach [9]. See also [10] for the
decomposition of the space picture realized in Fermionic forms.

Here we are interested in the finite-temperature problem. Standard arguments employ the
string hypothesis [2, 11]. The excitation is described not in terms of ‘physical excitations’
in the above sense, but in the ‘string basis’. There, strings of arbitrary lengths are allowed,
which results in infinitely many coupled integral equations among infinitely many unknown
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functions. The description successfully reproduces the expected specific heat anomaly. It may
not be, however, best suitable for practical numerics.

We revisit the problem via the recently developed commuting quantum transfer matrix
(QTM) approach [13—-20]. The formulation does not rely on the string hypothesis. Rather, it
only relies on analyticity structures of the object called QTM [12, 21]. The problem of the
combinatorial summation, i.e. evaluation of the partition function, then reduces to investigation
of the analyticity of suitably chosen auxiliary functions. Up to now, two kinds of choices have
been adopted independently:

(a) The eigenvalue of the QTM as given by the quantum inverse scattering method consists
of several terms. The auxiliary functions are chosen from combinations of products of
these terms [13-15,17]. A convenient choice leads to a finite number of coupled nonlinear
integral equations for a finite number of unknown functions.

(b) A set of auxiliary functions may be chosen from the fusion hierarchy among ‘generalized’
QTMs [12, 16,18, 20]. Generically, one obtains an infinite number of coupled nonlinear
integral equations for an infinite number of unknown functions. This can be shown
to recover the conventional TBAs based on the string hypothesis. Of course, the new
approach is entirely free of any assumption about excitations (unlike the string hypothesis).

The spin-1 case is analysed in the related problem, in the context of finite-size corrections
[22,23]. These six functions are introduced in the spirita)f The structure of NLIE among
them is much more involved in comparison with the séinase, and seems to defy a simple-
minded generalization to highSrcases. In a sense the most subtle point in the QTM approach
appears; one does not knowapriori ‘better’ set of auxiliary functions.

Here, we adopt another choice of auxiliary functions: in particular, for the spin-1 case the
number of these functions is three in contrast to six as in [23]. A simple idea of combining the
two formulations &) and @) works well so that the generalization to arbitrafys possible.

The adopted functions agree with the picture in [7]. Roughly speaking, the fusiorbpaft (
the auxiliary functions is related to the RSOS piece of the excitation, while auxiliary functions
from (a) correspond to spinons.

We remark that the fusion hierarchy itself is not truncated, by brute force, into a finite set.
Instead, the spinon part makes the functional relations among them strictly closed. Thus we
obtain 25 + 1 coupled integral equations fo§ 2 1 unknown functions.

Besides the practical advantage, this implies universality in the description of the
thermodynamics of solvable quantum 1D chains, i.e. description only in terms of objects
which reduce to physical excitations #fh — 0. This has already been demonstrated for
several models in highly correlated 1D electron systems including the supersymmetfic
model [14], the supersymmetric extended Hubbard model [15] and the Hubbard model [17].
There the exact thermodynamics are formulated in terms of ‘spinons’ and ‘holons’, although
they lose sense at sufficiently high temperatures. This paper adds one successful example even
in the fusion models and gives further support to the above conjecture.

This paper is organized as follows. In section 2, we define the main object in this approach,
the QTM. A minimal information of the novel approach is sketched. Section 3 is devoted to
a brief description of the fusion hierarchy of generalized QTMs. After these preparations,
we introduce auxiliary functions and examine functional relations among them in section 4.
The analytic structure studied numerically leads to nonlinear integral equations as discussed in
section 5. Based on these equations the low-temperature asymptotics are studied analytically
in section 6. The central charge of the le¥el= 25 SU(2) WZWN model is successfully
recovered. We also present the numerical evaluation of the specific Ifeat ét 1, g‘ models
for wider ranges of temperatures. In section 7, the implication of the present formulation to
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Figure 1. Graphical representation of tiematrix (its eIemenR;‘g‘/).

the spinon character formula of the WZWN model [9, 24, 42] is discussed. A summary of the
paper is given in section 8.

2. QTM formulation

The present QTM formulation originates from two ingredients: the equivalence theorem
between 1D quantum and 2D classical systems [21] on the one side and the integrability
structure on the other [25]. The latter, in particular, provides a way of introducing commuting
QTMs which reduce the problem of combinatorial counting to that of the analyticity of suitable
auxiliary functions [12]. Such a strategy has been successfully applied to several interesting
models [12—20]. We also mention earlier studies on thermodynamics [26—30] which essentially
utilize only the former part of ideas.

A classical analogue to the solvable spirk X X model is already found as &2 1 state
vertex model [33]. The Boltzmann weights are identified with the matrix elements efthe
invariantRY matrix:

k
RY(u) = Z P2x—2j (U) Por—2;

o . (3)
:Hz(k—z)—unzac—mm
Prai =i 2e-n a0

wherek = 25 andP; is the projector td/;, the(;j + 1)-dimensional irreducible module of;.

We choosg—;/2,—j/2+1, ..., j/2} as basis folV;. The spectral parameterrepresents

the anisotropy of the vertex weights. The Yang—Baxter equation implies the commutation of
row-to-row transfer matrices for arbitrary spectral parameieis 7 (u)7 (v) = 7 (v)7 (u)

with

L
=2 R w @
noi=1
whereL denotes the real system sizg, 8;, u; € Vi, R = PRY andP(x ® y) = y ® x.
The Hamiltonian is obtained as the logarithmic derivative &t O,

H = Ji In7 (u) (5)
du

u=0
It is an easy exercise to verify (5) gives (1) and (2) $oe= % 1 respectively. This may be
done most easily by representiig in (3) by

PR
S§S—x

P = u
I X;j—x

p=0,p#j *J r
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@ (b)

Figure 2. In the same spirit as figure R-matrices;R (a) andR (b) are depicted above.

andx; = 2(4(4 +1) — k(4 + 1)). The Hamiltonian for general can be extracted similarly.
This is the well known expression of the equivalence between 1D quantum systems and 2D
classical models. To utilize the equivalence in evaluating fifiitiantities, in particular free
energy, we need to proceed further.

Let us introduce Boltzmann weight® (R) of models related to (3) by clockwise
(anticlockwise) 90 rotations:

RE@) =REW)  RE®©) =R%®).
The standard initial condition of theY-matrix and (5) lead to significant relations,
T(u) = Tr€M/*0W T () = T,eM7+0W (6)

whereT is defined in analogy to (4), replacirg by R. 7z, are the right- and left-shift
operators, respectively, and they commute with the Hamiltonian.
We are ready to apply the Trotter formula; by substitution

u=—JB/N )
we find
(T ()T (u))N/? = e PH+od/N), (8)

whereg denotes the inverse temperatur€.is a large integer ‘Trotter’ number, interpreted
as a fictitious system size in a virtual direction. Thus, the partition function of the quantum
system (sizd., inverse temperaturg)

7= ]Ji_)moo tr(7T ()T (u))N/? ()]

is identical to the partition function of an inhomogeneo§s 2 vertex model with alternating
rows on a virtual 2D lattice of sizé x N (see figure 3). Although the above mapping is exact,
the expression (9) is not yet efficient. The eigenvalueg @f)7 (1) are almost degenerate.
Hence it is still a difficult task to evaluate the trace. The intriguing point in [21] is to consider
a transfer matrix/ (1) propagating in the ‘horizontal’ direction.
This novel operator acting aN sites, has gaps in the eigenvalues providied 0. Here
we adopt the more sophisticated approach developed in [12—-20]. Explicitly, we define the
QTM by
N/2
Tom(u.x) = Y [ [REZ4Z (u+ix)RLZL2 (u — ix) (10)
woi=1

which reduces to above-mention€du) by puttingx = 0. Figure represents the QTM
graphically. Though the introduction of the extra parameteeems to be redundant, there is
a remarkable property:

[Zomm(u, x), Torm(u, x)] =0 (11)
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TQTM

- =l

\AA

L

Figure 3. Graphic representation of the partition function on a virtual two-dimensional lattice of
N x L. The operatord’, T transfer states from bottom to top, whilgu) and7gtv do so from
right to left.

N S 2 I

Figure 4. Graphic representation G&tm (1, v).

by fixing u. This originates from the fact th@& andR operators possess the same intertwiner.
Thus for eacl’, one can associate an auxiliary complex plare the partition function.

Due to the gap in spectra, the free enefggf 1D quantum spin chains is given only by
the largest eigenvalu@qrm (i, x),

f:—l lim lInZ:—l lim InAQTM(uz ﬁJ,x:O). (12)
B Lo L B N—>oo N

This is the starting point of our analysis. The difficulty in evaluating (12) lies inXhe
dependence of the vertex weights. The numerical extrapolation throughNirstedies may
be plagued by marginal perturbations [19]. The prescription is to utilize the existence of the
complex planex for eachT. The analytic properties diotm and suitably chosen auxiliary
functions in thex-plane make the evaluation possible and transparent.

Before closing this section, we shall describe how to modify the above relations in the
presence of an external magnetic figlgdnamely by inclusion of the Zeeman ter2H ), S}
to the Hamiltonian (5). This contribution is described by diagonal operaiéf),

e 2SBH e 2SBH e 2SBH
e (2S-DBH e (2S-DBH e (S-DBH
eZS'ﬁH ezs}m ezs}m

Thus, one has only to insert this inside the trace (9):

Z= Nlim tr(7 ()T (u))V?>D(H).
In the rotated frame, the effect of the insertionfofH ) is translated to the boundary weight,
B(py) = efmtl;

N/2
Tom(u, x) = > B(uy) [ [REZ 52, u+ix) REZ [ (u — ix).
" i=1
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Figure 5. For T (u, x), the vertical arrows carry; while the horizontal (broken) arrow carri&s.

3. Fusion hierarchy

We consider a hierarchy of quantum transfer matrices actingfon LetT; (u, x) be amember
of the hierarchy with the auxiliary spadé.

In other words, it is the transfer matrix of the vertex model of which spias k/2)
are assigned to vertical edges and spif to horizontal edges (figure 5). The quantity of
our interest,Totm(, x) coincides withTy (u, x) apart from over-all normalization, which is
specified later.

For brevity, we shall only give matrix elements B{u) defining the most fundamental
Tr(u, x).

Ry > Py =u+1+2¢ RYT ) = /(k+ 2+ 2mine, £))(k — 2min(e, €))
wherel, ¢’ € {—k/2...,k/2} and|¢ — ¢'| = 1. Similar to (3), the corresponding” matrix
has decomposition:

R'(u) = u+k+DPa+u—k—1)P_1. (13)
TheR-matrix for T; (u, x) is obtained from the above element&yu) by j — 1 times fusion

in the auxiliary space. By the construction, arbitrary pairs in this hierarchy are commutative
if they share the same

[T;(u,x), Ty (u,x")] =0.
Thisisageneralization of (11). Inthe following, we fi%or all QTMs and omit the dependency
onu. Due to the consequential commutativity, one needs not distinguish operfatssn

their eigenvalues.
Then the explicit eigenvalue of the most elementary transfer mai(ix) reads

Ti(x) = ¢+ (x — (k — Di)p_(x — (k + D)i)efH O (x +2i)

o(x) i
+p_(x + (k — D)+ (x + (k + 1)i)efﬂHM
0(x) (14)
s (x) 1= (x £iw)"/?
Q) =[x —x)
j=1

wherex;, (j =1, ..., m) denotes the solution to the Bethe ansatz equation:

¢ (x; + (k — i) (x; + (k + D)) _ _2bH O(x; +2i)

¢+ (xj — (k — D) (x; — (k + 1)) O(x; —2i)

The number of BAE rootsy, differs for different eigenstates generally, and= Nk /2 for
the largest eigenvalue case.
By construction of the fusion hierarchy and from singularities of the intertwining operators
(13) by tentatively replacing — j, the following relation is valid:
Ti()Ti(x —i(j+ 1) = Tjwa(x — 1) + g; () Tj—1(x +1)
gi(x) =¢_(x —itk+j+2)p_(x +i(k — j))P+(x —1(j +Kk)Pp+(x +i(k — j +2)).
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From this, one can prove the important functional relatiBrsystem) by induction [36],
Tp(x + I)Tp(x - I) = fp(x) + Tp—l(x)Tp+1(~x) (17 = 1)

P
. . . . 15
Fr) =[] T o +io(p — k = 2 + D)y (x + ik — p + 25 + 1)) 1)
j:lO':i
and7p = 1.

By substituting (14) into (15), we can successively obtBjax), (p > 2). Explicitly,

T, (x) consists of a sum gf + 1 terms,

ptl

T,(x) =Y A (x)
=1

(D) pn o BH(p+2—20)., (D) Q(x+i(p+1))Q(x —i(p+1)
M = ) ey D)on T = p =)
p—t+1 (16)
Y @)= T ¢ +i(p—k — 2j)palx +i(p — k +2—2j))
=1

J

-1
< [[e¢- —itp —k+2=2j)¢s(x —i(p — k — 2)).
j=1
As has been noted; (x) has a normalization trivially different froffigrw (1, x) in the previous
section:

T (x)
[15_1 do(2ip) 17)
po(x) == xN/2,
In the original problem of the spi§-chain, only7; (x) is of interest. The auxiliary;,
however, make the evaluation Bf(x) transparent, as is shown in the following.

Torm(u, x) =

4. Auxiliary functions and functional relations among them

To explore the analyticity of the transfer matfix(x), we introducet + 1 auxiliary functions.
The firstk — 1 functions{y; (x)} have been used in many works and have a sound basis in the
sl, fusion hierarchy. They are defined by [36, 37]

T; 1(x)Tj+1(x)

yi(x) = j=1
! fi() g
The functional relations among them are sometimes referred to asdkstem:
yitx +D)yj(x — 1) =Y;_1(x)Yj+1(x) i=1

(18)
Yi(x) :=1+y;(x)

and yo(x) := 0 which is a consequence of equation (15). Note thatitksystem is not
truncated to a finite set in this case. Ttke— 1)th equation, which characterizeg_ 1(x),
inevitably containgy (x) in the rhs, and so on. Thus, another device is needed to construct a
finite set of auxiliary functions satisfying a complete and closed set of functional relations. The
remaining two function$(x), b(x) and their ‘relativesB (x) := 1 +b(x), B(x) := 1 +b(x)
play this role. We define them by ratiosofn 7, (x) as,
P+ P )
b()C) = (k) .
Mrr (X +1)

Al =)+l (e =)

A0 (x =) '

(19)
E_J(x) =
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The following relations are direct consequences of the above definitions:

Bl +i) = 150 T [ [0+ @+ 25 gy

i O(x +ik)
(20)
Bn)ry (x — &ﬂﬂ%<x)ﬂﬂ¢g(x 2j - )l)g((x ))—Tk(x—i).
o=% j=1

We havek — 1 equations foy;, (j = 1,...,k=1)intermsofY;(x), (j =1,...,k—1), B(x)

andB(x). The firstk — 2 equations are chosen directly from thesystem. In theék — 1)th

equation, we rewrit&, (x) in the rhs of the’-system § = k — 1 in (18)) by®B(x)B (x), thanks
to (20), the definitions ofy, Y, and the functional relation (15):

Vi1 (x — Dyp—1(x +1) = Yi_2(x)B(x)B(x). (21)

Finally, equations fob in terms ofY;(x), (j = 1,...,k — 1), B(x) andB(x) are to be
found. By comparing explicit forms, one finds

¢ (x +i0) O(x +i(k+2)
b QBU+DH |
"= l_[ j= 1¢a(x+(2] +o)i) QO —ik)
b(x) = e PhrvH $o (x +io) QG —itk+2)
o=+ ]_[I;-=1 o (x — (2j —o)i) Qx+ik)
Note that7;_1(x) is presented by _1(x):

Ti—1(x —DTh—1(x +1) = froa(x) Y1 (x) (23)

which originates directly from definitions gf_1, Y;_1 and the functional relation (15).
In what follows, we analyse these functional relations via the Fourier transformation. One
denotes//b[q] to mean the Fourier transformation of the logarithmic derivative(a?:

- g .
diblq] :=/ %e‘w dx

and similarly for other functions. With some assumptions of the analytic properties of
the auxiliary functions, the above functional relations can be transformed into algebraic
equations in the Fourier space. Roughly speaking, one can éb®g] functions in terms
of c?liB[q] and cﬁ%[q] by deletingcﬁTk[q] from algebraic equations originated from (20).
Similarly diT;_1[g] is solved bydlY,_1[4] from (23). Substituting these results into Fourier
transformations of logarithmic derivatives of (22), one finds expressiodgoff], d! b[g] in
terms ofdiB[q], dIB[¢] anddiY,_1[q]. After inverse-Fourier transformation and integration
over x, one obtains the desired finite set of equations. We will make the above-mentioned
analytic assumptions explicit and examine them in the next section.

Before going into details, let us discuss the physical interpretation of the above functions.
As is argued in [7], theS-matrix of excitations in the spi-model factorizes into two pieces:
the spin% SU (2) S-matrix and the RSOS-matrix ofsl, level« = 2S. This is consistent with
the general expectation that the underlying field theory is the lex&l-(2) WZWN model.
The latter is known to ‘decompose’ into Gaussian aiidparafermionic field theories [34].
One finds, see for instance [35], evidence for the equivalence betweeh BR8OS model in
regime Il and thez; parafermion field theory in the scaling limit. In the present description,
b, b are to be identified with up- and down-spinons. As we will see later, only they couple
to the magnetic field directly. For thg = % case, there is further direct evidence for this
identification [51]. On the other handly;(x)} are insensitive to the external field. We are
led to identify y;(x) in our choice as the RSOS piece of the excitations. The RSOS model
possesses a subset of thesystem (18). The additional condition = 0 for the model

Ti—1(x)
(22)

Ti—1(x).
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leads to the truncated set of equations ambngl y [36, 38]. In the present problem, at
sufficiently low temperatures, one observiés, |b| ~ 0 for x << In . Thus the substitution

of B = B = 1in (21) might be legitimate in the vicinity of the origin. Then the resultant
approximated’-system coincides with that of the RSOS model. In this sense, (21) represents
a gluing relation between spinon and RSOS parts of excitations.

5. Nonlinear integral equations

We derive the nonlinear integral equations among auxiliary functions introduced in the previous
section. The crucial observation is, that all nontrivial zeros and singularities of these functions
are determined by zeros ¢f(x) andT;(x), (j =1, ..., k). For the largest eigenvalue sector

of Tx(x), zeros ofQ(x) form so-calledk-strings. Imaginary parts of zeros are approximately
locatedatk+1) —2¢,¢ =1, ..., k. Forlater use, we introduce the notations,

Wi(x) = O(x —ik) Wyo(x) 1= Q(x +ik). (24)
Empirically, similar patterns are found for zeros®f(x): they distribute approximately on
lines, Imx = £k +j —20),¢£ =0,...,j — 1. We assume that these observation from

numerics with fixedV is valid and that the deviations from lines are very small in the limit
N — oo. Then one deduces the following ansatz on the strips where auxiliary functions are
analytic, nonzero and have constant asymptotic behaviour (ANZC):

b(x), B(x) —1<Imx <0

b(x), B(x) 0<Imx <1
yi(x), Y;(x)(Gj=1...,k=1) T,(x), (p=1,...,k) —1<Imx <1

Wq(x) Imx <0

Wr(x) Imx > 0.
We find it convenient to shift the definition of the argumentshji3, b andB. To avoid
confusion, these new functions are denoted e,

a(x) :==b(x —iy) a(x) == b(x +iy)

and similarly for capital functions. Here9 y < % is an arbitrary but fixed parameter. Note
that this is equivalent to adopt small shifts in the definition of the integration contours for the
Fourier transformation. Due to the ANZC propertiesbob, such modifications are almost
trivial in the Fourier space.

Having identified ANZC strips, we revisit equations (20). Consider the integral,

f d log Ty (z)€9° dz
c dZ

whereC encircles the edges of ‘square=¢o — i, 0o — i] U[oco — i, 00 +i] U[oo +i, —oco +
i] U[—o0+i, —oo —i] in counterclockwise manner. Due to the ANZC propertydgzofog T (2)
insideC, the following equation is valid from Cauchy’s theorem:

© d ) . © d . )
0= / —log Ty (x — )€1 dx — / —log Ty (x + )€ dx.
oo dx oo Ox
One substitutes equations (20), re/v\vritten iniermsycgjzgx),m(x),ﬁl(x), into the above
equation and derives identities amafigly 2[q], diA[q], dIA[q],

ch\Ill[q <0]=0
el-rg __ _ e 19 €% sinhkq cosh(1 +u)g

diA[q] — diA[q] + miN
2 coshy L] 2 coshy Agl+ i coshg sinhg

divi[g > 0] =
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A-vq __ _ e (1-vq _ . el sinhkg cosh1 +u)q
diA[q] + diA[q] — wiN -
2 coshy Lg] 2 coshy [g] =i coshy sinhg
dlWy[g > 0] =0

dlW[q < 0] = —

and dl\Ifl[q = 0] = —dlllfz[q = 0] = nNki. Similarly, one can derive an identity for
dly, [¢] and dlY [¢] from (18), anddIT;_1[¢] and dly,_ 1[¢] from (23). Substituting these
relations into the original definitions afanda, we obtaink + 1 algebraic relations in Fourier
space. (Remembeb; »(x) are related toQ(x) by (24).) After taking the inverse Fourier
transformation and integrating overonce, we arrive at the + 1 coupled nonlinear integral
equations:

log y1(x) 0 log Y1(x)

log e 1(x) | = 0 +K* | log ¥, 1) (25)
loga(x) BH +d(u,x —iy) logA(x)
loga(x) —BH +d(u, x +iy) logA(x)

where(K x g); denotes the matrix convolutioEj f Ki j(x —y)(g(y)); dy and the ‘driving’
functiond (u, x) reads

N Slnhuq
du,x) = / COShq dqg.

The integration constants-8 H) are fixed by comparing asymptotic valugs|(— oo) of
both sides.
Explicitly the kernel matrix is given by

0 Kx) 0 - 0 0 0 0
K(x) 0 Kx) --- 0 0
0 K() 0 0 : :
Kx) = : : : (26)
0 0 K (x) 0 0
0 K(x) 0 K(x +iy) K(x —iy)
0 0 K(x —iy) F(x) —F(x+2i(1—y))
0 0 K(x+iy) —F(x-—-2i(1-vy)) F(x)
where
K(x): L
x) = —m——
4coshrx/2
1 [ e lal= Iqx
F J—
(x) := on f 2coshq

Ty, in terms of these auxiliary functions, can be derived similarly. Technically, we find it
convenient to introduce

T (x
TR = — : () : @7
Hp:l ¢e(p)(x —2ik+1— p))¢e(p+1)(x +2i(k+1— DP))
ande(p) = +(—) for p = even (odd). Then the product of two equations in (20) leads to a
simple algebraic relation:

B(x)B(x) for k even
T —DTF(x+i) = N L))

(28)
%(x)%(x)d)_(x vy for k odd.
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From the ANZC property of both sides of (28) in appropriate strips, the logarithmic derivative
of them reduces to a simple algebraic equation in Fourier space. Taking account of the
normalization (17) and (27), we have

logA(y)
_ (0) +
log A gru (u, x) =109 A pr (1, X) /4coshn/2(x —y+iy)
log2l(y)
. q 29
/4coshn/2(x—y—il/) g ()
N —iox—1o) SiNhug
log Ay, (u, x) = —5k=1<mod2)§/e - |qlqcoshq d
3 log { Peip o = 200k + 1= Py (x + 200k + 1~ p) } : (30)
<y $o(2ip)
Finally putu = —BJ/N and sendV — oo analytically. This merely amounts to
replacements:
_ BJm
d(u,x) > D(x) = 2 coshr /2x (31)
J K ()i
109 Ay, (1, x = 0) — —Beo = _ﬂ? : J) " amona 1092
j=1

Note thateg coincides with the known ground state energy [2] after a trivial shift which stems
from the difference in the normalization &. Thek +1 coupled nonlinear integral equations
and logA o7 do not carry the fictitious paramet®rany longer. They efficiently describe the
thermodynamics of the solvable spinX X X model. For an illustration, the specific heat for

S = % 1, g is evaluated for a wide range of temperature and plotted in figure 6. Each curve
is produced by a 10—-30 min CPU time calculation on a Micro Sparc work station. In the next
section, we derive the low-temperature properties using (25), (30) and (31).

6. Analytic evaluation of the low-temperature asymptotics

We considerT — 0 for the vanishing magnetic field. In a sufficiently low-temperature
regime,a, log2l shows a sharp crossover behaviour like a step functign| log®l| « 1 for

lx| < 2logmpJ andlal, |log2| = O(1) for x| > 2logmpJ. Thus the following scaling
functions [23] control the asymptotic behaviour:

2 2
la® () :=loga <i;(§ + Iog;r,BJ)) IA%(®) ;= log (j:;(g + IognﬂJ)>
la*(¢) :=loga <j:§(§ + Iognﬂ])) [A%(£) :=log (if(s + Iogn,BJ)) (32)

+ . 2 + X 2
ly, &) :=logy, (i;(g + Iognﬂj)> 1Y, (¢§) :=logy, <i;(§ + Iognﬁh) .

In terms of these scaling functions, NLIE are expressed by,

Q) 0 1Y (&)

] + = 0 +K x lyi:

o || e || ) @
l(,_li(é) _e7§$|y71/2 lAi(E)

_ 2 (2
K =~k <;) .
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Figure 6. Specific heats fof = g 1 and% from top to bottom.

Note that neglect of small correctionsO(T) leads to the decoupling equations fbr
The thermal contribution (the second and the third termin (30)) tg lim log Aqrm(u =

—27 %) reads,
grx/2 . -
<257 [éV”/2[e51A+d§ +e'V”/2/eElA+d§}

—er/Z
+— [e—‘”/z / e fIA- de +e77/? / e flA” dg}.
weBJ
The crucial observation in [23] is that one needs not solve (33) to evaluate (34) provided that
the kernel matrix function satisfies a symmeigy,; (x — y) = K;;(y — x). This property is
valid in the present case. See (26).
We defineF. by

k 1
* + d + + * d + +
F. _/ [(ds p)zy (@y )lyp}d§+/oo[<¥la )ZA
d -+ == d + + d +
+(£la )lA _<dg:lA )la —<d§lA ) }dg (35)

Then the trick in [23] is as follows. First, take the derivative of both sides of (33) and multiply
them by a row vector:

AYF®), . 1Y 1(6), IAT(E), LAF(§)). (36)
We call the resultant equality (A). Second, multiply both sides of (33) by the derivative of the
row vector (36), which is referred to as (B). Finally, subtract both sides of (A) and (B), and
integrate oveg. Then the lhs of the resultant equality is sim@ly. Remarkably, the most
complicated terms in the rhs, such as

/ds de'1y, <s>—’c"@g £)

(34)

1Y} (&)
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and

/ d + % / tel
- / i 0’ 1Y O)R(6 = €)1Y€
cancel each other. To be precise, the first integral can be converted step by step,
di;; (6 — &)
dg’

d/& j,i f— + et

- [ dé’lﬁ(é)%zn @)
/ + (5! i

/dé d&" 1Y, (§)K;.i (& f;‘)dé,

d _
~ [ e 1Y O (6 €11 E)

where the symmetry of the kernel matrix, partial integration and the change of integration
variablest < &’ are used.
Similar cancellation happens for other terms and the following equality results:

= _/dg de’ 1Y} (&) Y7 (&)

1Y} (&)

Fy=2 / [e 5= /2 I A* + e 5T 7/2] A*] dg. (37)

The first thermal correction (34) is thus given by
e€/2F, e /2F_
2n2BJ " 2n2BJ
To evaluate”,. explicitly, one rewrites the integration variable frgnoa, a, y,. For example,
the first summation term i is transformed to
S [0y, (log@+y)  logy
/ g < y o 14y

(38)

k=1
) =2 {L+(yF(00)) — L+(yE(—00))}
=15 (=00) =1
and similarly for othersL.(x) is a dilogarithm function and is related to Rogers’ dilogarithm

functionL(x) by L+(x) = L(x/(1 +x)):

1 [ (log(1l+y) |09y>
L+X = = — d
) 2/0 ( y l+y Y

X .
Lix) = _}/ (Iog(l— Y, Iogy> dy
2 Jo y 1-vy
The asymptotic values of scaling functions are easily extractedv Feroo, a® coincides
with original b. Thus, one derives the limiting value by its definition (19) in termagﬁ)f.
Similarly for ylf(oo). Forx — —oo, one should rather consult (33). We send the argument
x — —ooin both sides and solve the resultant algebraic equations. The results are summarized
as:

(39)

at(—00) = at(—o0) =0 a*(00) = at(c0) =k
sin ZZ sin 222
y;(—m>=% 1<p<k—1 (40)
s Sl )
yp(00) = p(p+2) 1<p<k-1

With these pieces of informatiot,.. is now given by

= (p+1)? sir? 2+ 1+k)°

k+2
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Finally we use three relations [39]:
2

L) =Lx)+L(L-x) = % x €[0,1]
2L(1) = 2L 1 + S L 1 eZ
= — —_— n
n+l) = \@d+))? 7
3n [ sif
L)— =) L|—-=2 nez
2 =0 (sin2 e 7
which yield the neat result
%k
T
Thus we conclude the low-temperature asymptotics of the free energy:
T

wherev; = Jxr/2 coincides with the known spin velocity [40] aadk) is simply the central
charge of the levet- SU(2) WZWN model. This is the desired result from the WZWN
description of massless quantum spin chains. We remark that the final part of the calculation
is quite parallel to that in [11] utilizing the same dilogarithm function identities. There the
spin-S X XZ model is discussed via the standard string approach at ‘root of unity’ where the
number of strings is truncated finitely from the beginning.

7. Spinon characters

The character formulae obviously depend on the base of the space. Recently, the quasi-
particle representation has attracted much attention in the context of the long-range interacting
model [24, 41, 42], spectral decomposition of path space in lattice models [9], and in the
statistical interacting picture of Bethe ansatz solvable models [43-47]. See also [48, 49]
for different view points. For the spié-case, it has been recently shown that the novel
thermodynamics formulation yields a natural spinon character and that such a character formula
is generalized tel(n),—1 [51]. Thusitis tempting to find analogues fdrn),—»s. The results

given in the previous sections provide the first step for the simplest2 case as discussed
below. Note that we consider ‘chiral-half’, such that the only positive contributionsisay

in the previous section are taken into account.

The character needs the description of all excited states. In the present context, this
information might be encoded in the additional zerosupd, y and their capitals in their
‘physical strips’. Indeed, some low excitations are identified in such a way [16, 18], and
corresponding excited state TBAs are derived. Such an analysis is of considerable interest,
however it requires extensive numerical efforts. We leave it as a future problem and make a
short-cut detour here employing the strategy in [50].

The central charge is described by the dilogarithm function of which the integration contour
is simple. On the other hand, one can define an analytically continued dilogarithm function
L¢(z). This is established by adopting general contodor the integration contour of the
dilogarithm function. We then generalize a successful observation from specific examples; all
excitation spectra, or effective central chargg, in the conformal limit shall be described
by L:(z). Namely, the replacement of a simple contour in the integral representation of the
dilogarithm function by a complex one leads to an excited state. Regargirag a function
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D

f_

Figure 7. A contourC[ f—, f+|{2}|{—1, 1}].

of L¢(z), the summation of ~°"/24 over a certain set df is thus expected to reproduce affine
characters. (Readers should not confuse this formal varighitee standard notation in this
field, with the Fourier variable used in previous sections.)

Let us be more precise. BRywe denote a contour starting frofn and terminating af’,
suchthatitfirst crosses,[do) n1(£ 0) times then crossés-oo, 0] £, times then again, times
w.r.t. [1, co) and so on. The intersections are counted as-t} if the contour goes across
the cut [1 oo) in the counterclockwise (clockwise) manner ageboo, 0] in the clockwise
(counterclockwise) manner. (Note that this definition is slightly different from [50,51].) We
denote this bYC[ f_, fil{&1, &2, .. . }{n1, n2, ...}]. The set of contours are parametrized by
S={CLP, £Vl nf” T wherefi? =yl (d00)/ Y (£00), (1< p < k=D),

O — g+ (00) /A (00), FEY = §*(00) /A (00) and fX = &+ = 0.
In the absence of additional zeros of auxiliary functions in the ‘physical strip’, we have

0=log(f") = g, logd — A7) (42)
.

where the ‘statistical interaction’ matrig is related to the zero mode of the Fourier
transformation of the kernel matrix (26) by

g=1-K[g=0]. (43)

This is the situation we have treated in previous sections, and (42) follows from (33). One
replaces log in (42) by an analytically continued one,(@@in excited states:

niD? = |Ogcrm(ﬁ£p)) - ng,p’ logeen (1 — f+(p,)) (44)
Y

where log, (fi”) = log(fi”) — 27i Y, &" and so on. HereD? is introduced for

consistency of both sides, and is interpreted as ‘chemical potential’ [50]. On the other hand,

D) should originate from the zeros of the auxiliary functions in the physical strips. One may

be able to prove that sudh” actually agree with ones in (44), in principle. Though such a

microscopic derivation has yet to be performed, we assume the coincidence in the following.
The excitation spectrum is solely implemented in the effective central chgr¢):

6 i
can(S) = — 3 (Lc(m (f2, i) = = D' logen (1~ fl’”)) : (45)
p

HereD termis included by hand, so as to match its interpretation as chemical potential [50].
L is given by

Le(f ) = / ('Ogc(zl‘” . 'igj(?) o (46)

for a pathC from f_ to f..
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ElElG

Figure 8. Young diagramsy D?) of n? = 3 corresponding to a set of winding numbers:
{€} = (1,1, 1}, {n} = {1, 1,2} (left), {¢} = {1,1, 1}, {n} = {0,1,1} (middle) and{¢} =
{1,1,1}, {n} = {1, 1,0} (right). Arrows are included as a guide to the eye. The diagram on
the far rhs is termed ‘with tail’ in the text.

After straightforward manipulations, one finds [50],
Lew (f7, f7) = LAY = L) — i Yy &7 log(1 — 7)) — i Z n,” log(f+")
¢

+2”2( Zgé”) ( 2 ’7?’)> — x4, (7)
4 4 ¢

RemembelL (z) isdefinedin (39). The substitution of (47) in (45), using (44) and the definitions
of log,, leads to a remarkable resutti can only be written in terms ef(k) (see (41)){5(” )
and{n;"},

k+1

cait(S) = c(k) —24T(S)  T(S) == ngn YN E " )

a=1+¢>1 (48)

‘m=n®, ... n*D)

wheren® = Y, 7", Note that the explicit forms oD are not needed in the above
transformation.

In the following, we shall argue that the summationgofe" over some subse? of all
possible contours reproduce the characte(gly) of the levelk WZWN model with spinj
(j = some fixed integer or half-integer).

We present necessary conditions for stthelow.

e 1 and¢ are non-negative.
Such a path can be parametrized by
CLEY, FPIED W1, .. 1]
[ —

n®
ands” >0, (p=1,...,n?).

e Forp=k,k+1,we require”(””zﬁ — j € Z>o in addition.
e Forp<k—1,¢7 >

Graphically, one can associate a Young diagr&m”’ to a set of winding numbers:
("1, (n"”’} (or a Young diagram with tail for some casesjin= k, k + 1). First draw a
line of length 1 downwards. Next draw a line of lengtt’ to the left. Then draw a line of
length 1 downwards again. We continue this proceditetimes. Finally draw a horizontal
line from the starting point to the left and also draw a vertical line from the end point upwards.
See figure 8. Obviously, the number of boxes in the diagram is equal to the second term in
7(S).

We allow for contours which are isomorphic to a set of Young diagr&m$”, (p =
1,...k — 1) such that
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o n*&=2r*D — odd,n*~27) = even.

e By the definition, the depth of D is n». The width is restricted by the maximum

valuew %, which is determined by depths of ‘adjacent’ diagrams:

wh) = %(n(”_l) +n P 2P 4 5,00 ) p=1....k-2
for the fixed j andn©® = 0. The casep = k — 1 is exceptional: wiad =

L&D 4+ 0 4 pGtD _ 2pk=D) 4 5. oy,

Under the above restrictions dh we find

— +7 A (k) _jp (k+1)
q A(J)+J/2Chj (z,9) = Zq cet(5)/24, (10 —n®*D) /2
Seo

— (0 4 &*DY2 /4 - () 4 (k5D
g~ AR T s ) S e (25 ).

n® p*+D >0
Su.n(z; ) stands for contributions frorM, N) spinons:

Sun(zq) = ———7M=M/2
' @m@)n
resulting from summations over ‘nodes” >0, ¢ =1,...,n" andp = k, k + 1. A, is the

Cartan matrix fos/+; andW¥,, denotes

‘IJZL:(M]‘; q) — Z l/4m Agm 1_[|: ((2 Ak) m+u; ) :|
mp,mas,..., myg
and(u;); = 8, 2j+1. The summations are taken over odd (even) positive integenssierodd) -
Note we redefin@*=® = m;.1, 1 < £ < k — 1. The appearance of the Gaussjahinomial
usually originates from combinatorics on the truncated Bratteli diagram and is the reminiscence
of the RSOS model. Here the origin is also simple. It comes from the restriction on the width
of Young diagrams. We denote the number of boxes in a Young diag@f¥ by »”. For
fixed {n@}, T (S) assumes the same value for diagrams having ideti®al This multiplicity
is given by p(n?, wifa, b)) = the number of partition 0(”) into at mostw,y part, each
< n'?), Thanks to the generating relation
» n® +wh nP= Y+ nP D 4§ 4 50)/2

;;p(n(p) wi HP)gP" = |: o max:| _ [( o pk—2j)/ ]
we obtain the product of Gaussigrbinomial equivalent to the one il:lj’jkl(u; q).

Our resultimplies that the Hilbert space of the leked€/ (2) WZWN model is isomorphic
to a part of homotopy space of Rogers’ dilogarithm function. We believe that this provides a
novel interesting view point in the prototype of CFT and deserves further examinations.

8. Summary and discussion

In this paper, we formulate a novel description of the thermodynamics of solvables spin-
XXX models. The suitable choices of auxiliary functions yield a natural generalization of
the strategy in [23]. The nonlinear integral equations close finitely, which differs clearly from
the string formulation [2] and is obviously efficient in numerics. The resultant formulation
has an interpretation in terms of physical excitations, spinons and RSOS kinks. This has been
demonstrated by the calculation of the low-temperature specific heat as well as the spinon
character formula. The latter, however, is derived under several assumptions on the possible
homotopy class of... Certainly these constraints on winding numbers have ‘microscopic’
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origins in patterns of zeros of— (or T) functions. This has actually been demonstrated for a
few cases: the superintegrable 3-state chiral Potts model [52] and the simplest¢aRSaIS
models with open boundaries [53]. We hope to report on extensive numerical investigations
on zeros in the present context in the near future.

Finally, we mention spinon pictures of different view points [54-56], where explicit
‘spinon’ bases have been constructed by vertex operators. Thus, the meaning of ‘spinon’
is more transparent than in our approach. Less obvious is their concrete relation to eigenstates
of spin Hamiltonians. The method also involves an uncontrolled approximation, a truncation
procedure, in evaluating the partition function as well as ‘one body’ distribution functions.
This contrasts to the present approach which involves no approximation. In a sense they are
complementary, and their relations are to be explored.
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