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Spinons in magnetic chains of arbitrary spins at finite
temperatures
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Institute of Physics, University of Tokyo at Komaba, Komaba 3-8-1, Meguro-ku, Tokyo, Japan

Received 7 July 1998

Abstract. The thermodynamics of solvable isotropic chains with arbitrary spins is addressed by
the recently developed quantum transfer matrix (QTM) approach. The set of nonlinear equations
which exactly characterizes the free energy is derived by respecting the physical excitations at
T = 0, spinons and RSOS kinks. We argue the implication of the present formulation for a spinon
character formula of the level-k = 2S SU(2) WZWN model.

1. Introduction

The 1D spin systems have been providing problems of both physical and mathematical interest.
Among them, there exists a family of solvable models of Heisenberg type with spin-S [1, 2].
For instance, this includes,

H = J
L∑
i=1

{ESi ESi+1 + 1
4} (1)

H = J

4

L∑
i=1

{ESi ESi+1− (ESi ESi+1)
2 + 3} (2)

asS = 1
2, 1, respectively.

Ground state properties as well as low-lying excitations have been elucidated by the
powerful machinery of solvable models, the Bethe ansatz equation (BAE). It has been
demonstrated in many contexts [3–5] that the underlying field theory is the level-k = 2S
SU(2) WZWN model [6].

Although this 1D quantum model is equivalent to a 2D vertex model, physical excitations
have both the nature of vertex models and restricted SOS models. This was first demonstrated
in [7] based on theS-matrix argument. The space of states is identified in [8]. Through the
decomposition of crystals, these double features are made explicit in terms of ‘type of domain
walls’ and ‘type of domain’. There are independent justifications for this: the double feature
in the spectral decomposition is shown by the path space approach [9]. See also [10] for the
decomposition of the space picture realized in Fermionic forms.

Here we are interested in the finite-temperature problem. Standard arguments employ the
string hypothesis [2, 11]. The excitation is described not in terms of ‘physical excitations’
in the above sense, but in the ‘string basis’. There, strings of arbitrary lengths are allowed,
which results in infinitely many coupled integral equations among infinitely many unknown
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functions. The description successfully reproduces the expected specific heat anomaly. It may
not be, however, best suitable for practical numerics.

We revisit the problem via the recently developed commuting quantum transfer matrix
(QTM) approach [13–20]. The formulation does not rely on the string hypothesis. Rather, it
only relies on analyticity structures of the object called QTM [12, 21]. The problem of the
combinatorial summation, i.e. evaluation of the partition function, then reduces to investigation
of the analyticity of suitably chosen auxiliary functions. Up to now, two kinds of choices have
been adopted independently:

(a) The eigenvalue of the QTM as given by the quantum inverse scattering method consists
of several terms. The auxiliary functions are chosen from combinations of products of
these terms [13–15,17]. A convenient choice leads to a finite number of coupled nonlinear
integral equations for a finite number of unknown functions.

(b) A set of auxiliary functions may be chosen from the fusion hierarchy among ‘generalized’
QTMs [12, 16, 18, 20]. Generically, one obtains an infinite number of coupled nonlinear
integral equations for an infinite number of unknown functions. This can be shown
to recover the conventional TBAs based on the string hypothesis. Of course, the new
approach is entirely free of any assumption about excitations (unlike the string hypothesis).

The spin-1 case is analysed in the related problem, in the context of finite-size corrections
[22,23]. These six functions are introduced in the spirit of (a). The structure of NLIE among
them is much more involved in comparison with the spin-1

2 case, and seems to defy a simple-
minded generalization to higherS cases. In a sense the most subtle point in the QTM approach
appears; one does not know ana priori ‘better’ set of auxiliary functions.

Here, we adopt another choice of auxiliary functions: in particular, for the spin-1 case the
number of these functions is three in contrast to six as in [23]. A simple idea of combining the
two formulations (a) and (b) works well so that the generalization to arbitraryS is possible.
The adopted functions agree with the picture in [7]. Roughly speaking, the fusion part (b) of
the auxiliary functions is related to the RSOS piece of the excitation, while auxiliary functions
from (a) correspond to spinons.

We remark that the fusion hierarchy itself is not truncated, by brute force, into a finite set.
Instead, the spinon part makes the functional relations among them strictly closed. Thus we
obtain 2S + 1 coupled integral equations for 2S + 1 unknown functions.

Besides the practical advantage, this implies universality in the description of the
thermodynamics of solvable quantum 1D chains, i.e. description only in terms of objects
which reduce to physical excitations inT → 0. This has already been demonstrated for
several models in highly correlated 1D electron systems including the supersymmetrict − J
model [14], the supersymmetric extended Hubbard model [15] and the Hubbard model [17].
There the exact thermodynamics are formulated in terms of ‘spinons’ and ‘holons’, although
they lose sense at sufficiently high temperatures. This paper adds one successful example even
in the fusion models and gives further support to the above conjecture.

This paper is organized as follows. In section 2, we define the main object in this approach,
the QTM. A minimal information of the novel approach is sketched. Section 3 is devoted to
a brief description of the fusion hierarchy of generalized QTMs. After these preparations,
we introduce auxiliary functions and examine functional relations among them in section 4.
The analytic structure studied numerically leads to nonlinear integral equations as discussed in
section 5. Based on these equations the low-temperature asymptotics are studied analytically
in section 6. The central charge of the level-k = 2S SU(2) WZWN model is successfully
recovered. We also present the numerical evaluation of the specific heat ofS = 1

2, 1, 3
2 models

for wider ranges of temperatures. In section 7, the implication of the present formulation to
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Figure 1. Graphical representation of theR-matrix (its elementRµµ
′

αβ ).

the spinon character formula of the WZWN model [9,24,42] is discussed. A summary of the
paper is given in section 8.

2. QTM formulation

The present QTM formulation originates from two ingredients: the equivalence theorem
between 1D quantum and 2D classical systems [21] on the one side and the integrability
structure on the other [25]. The latter, in particular, provides a way of introducing commuting
QTMs which reduce the problem of combinatorial counting to that of the analyticity of suitable
auxiliary functions [12]. Such a strategy has been successfully applied to several interesting
models [12–20]. We also mention earlier studies on thermodynamics [26–30] which essentially
utilize only the former part of ideas.

A classical analogue to the solvable spin-S XXX model is already found as a 2S + 1 state
vertex model [33]. The Boltzmann weights are identified with the matrix elements of theŝl2

invariantR∨ matrix:

R∨(u) =
k∑
j=0

ρ2k−2j (u)P2k−2j

ρ2k−2j =
j−1∏
`=0

2(k − `)− u
2(k − `)

k−1∏
`=j

2(k − `) + u

2(k − `)

(3)

wherek = 2S andPj is the projector toVj , the(j + 1)-dimensional irreducible module ofsl2.
We choose{−j/2,−j/2 + 1, . . . , j/2} as basis forVj . The spectral parameteru represents
the anisotropy of the vertex weights. The Yang–Baxter equation implies the commutation of
row-to-row transfer matrices for arbitrary spectral parametersu, v: T (u)T (v) = T (v)T (u)
with

T βα (u) =
∑
µ

L∏
i=1

Rµiµi+1
αiβi

(u) (4)

whereL denotes the real system size,αi, βi, µi ∈ Vk,R = PR∨ andP(x ⊗ y) = y ⊗ x.
The Hamiltonian is obtained as the logarithmic derivative atu = 0,

H = J d

du
ln T (u)

∣∣∣∣
u=0

. (5)

It is an easy exercise to verify (5) gives (1) and (2) forS = 1
2, 1 respectively. This may be

done most easily by representingPj in (3) by

Pj =
k∏

p=0,p 6=j

ES ES − xp
xj − xp
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(a) (b)

Figure 2. In the same spirit as figure 1,R-matrices,R̃ (a) andR̄ (b) are depicted above.

andxj = 1
2(
j

2(
j

2 + 1)− k( k2 + 1)). The Hamiltonian for generalS can be extracted similarly.
This is the well known expression of the equivalence between 1D quantum systems and 2D
classical models. To utilize the equivalence in evaluating finiteT quantities, in particular free
energy, we need to proceed further.

Let us introduce Boltzmann weights̃R (R̄) of models related to (3) by clockwise
(anticlockwise) 90◦ rotations:

R̃µναβ (v) = Rβαµν(v) R̄µναβ (v) = Rαβνµ(v).
The standard initial condition of theR∨-matrix and (5) lead to significant relations,

T (u) = TReuH/J+O(u2) T̄ (u) = TLeuH/J+O(u2) (6)

whereT̄ is defined in analogy to (4), replacingR by R̄. TR,L are the right- and left-shift
operators, respectively, and they commute with the Hamiltonian.

We are ready to apply the Trotter formula; by substitution

u = −Jβ/N (7)

we find

(T (u)T̄ (u))N/2 = e−βH+O(1/N). (8)

whereβ denotes the inverse temperature.N is a large integer ‘Trotter’ number, interpreted
as a fictitious system size in a virtual direction. Thus, the partition function of the quantum
system (sizeL, inverse temperatureβ)

Z = lim
N→∞

tr(T (u)T̄ (u))N/2 (9)

is identical to the partition function of an inhomogeneous 2S+1 vertex model with alternating
rows on a virtual 2D lattice of sizeL×N (see figure 3). Although the above mapping is exact,
the expression (9) is not yet efficient. The eigenvalues ofT (u)T̄ (u) are almost degenerate.
Hence it is still a difficult task to evaluate the trace. The intriguing point in [21] is to consider
a transfer matrixT̃ (u) propagating in the ‘horizontal’ direction.

This novel operator acting onN sites, has gaps in the eigenvalues providedT > 0. Here
we adopt the more sophisticated approach developed in [12–20]. Explicitly, we define the
QTM by

TQTM(u, x) =
∑
µ

N/2∏
i=1

Rµ2i−1µ2i
α2i−1β2i−1

(u + ix)R̃µ2iµ2i+1
α2i β2i

(u− ix) (10)

which reduces to above-mentionedT̃ (u) by putting x = 0. Figure represents the QTM
graphically. Though the introduction of the extra parameterx seems to be redundant, there is
a remarkable property:

[TQTM(u, x), TQTM(u, x
′)] = 0 (11)
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L

N

T

T

TQTM

Figure 3. Graphic representation of the partition function on a virtual two-dimensional lattice of
N × L. The operatorsT , T̄ transfer states from bottom to top, whilẽT (u) andTQTM do so from
right to left.

u+ix

u-ix

u+ix u+ix

u-ix u-ix

Figure 4. Graphic representation ofTQTM(u, v).

by fixingu. This originates from the fact thatR andR̃ operators possess the same intertwiner.
Thus for eachT , one can associate an auxiliary complex planex to the partition function.

Due to the gap in spectra, the free energyf of 1D quantum spin chains is given only by
the largest eigenvalue3QTM(u, x),

f = − 1

β
lim
L→∞

1

L
lnZ = − 1

β
lim
N→∞

ln3QTM

(
u = −βJ

N
, x = 0

)
. (12)

This is the starting point of our analysis. The difficulty in evaluating (12) lies in theN

dependence of the vertex weights. The numerical extrapolation through finiteN studies may
be plagued by marginal perturbations [19]. The prescription is to utilize the existence of the
complex planex for eachT . The analytic properties ofTQTM and suitably chosen auxiliary
functions in thex-plane make the evaluation possible and transparent.

Before closing this section, we shall describe how to modify the above relations in the
presence of an external magnetic fieldH , namely by inclusion of the Zeeman term−2H

∑
i S

z
i

to the Hamiltonian (5). This contribution is described by diagonal operatorD(H),
e−2SβH

e−(2S−1)βH

...

e2SβH

⊗


e−2SβH

e−(2S−1)βH

...

e2SβH

⊗ · · · ⊗


e−2SβH

e−(2S−1)βH

...

e2SβH

 .
Thus, one has only to insert this inside the trace (9):

Z = lim
N→∞

tr(T (u)T̄ (u))N/2D(H).

In the rotated frame, the effect of the insertion ofD(H) is translated to the boundary weight,
B(µ1) = eβµ1H ;

TQTM(u, x) =
∑
µ

B(µ1)

N/2∏
i=1

Rµ2i−1µ2i
α2i−1 β2i−1

(u + ix) R̃µ2i µ2i+1
α2i β2i

(u− ix).
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u+ix

u-ix

u+ix u+ix

u-ix u-ix

Figure 5. ForTj (u, x), the vertical arrows carryVk while the horizontal (broken) arrow carriesVj .

3. Fusion hierarchy

We consider a hierarchy of quantum transfer matrices acting onV
⊗N
k . LetTj (u, x)be a member

of the hierarchy with the auxiliary spaceVj .
In other words, it is the transfer matrix of the vertex model of which spinsS(= k/2)

are assigned to vertical edges and spinsj/2 to horizontal edges (figure 5). The quantity of
our interest,TQTM(u, x) coincides withTk(u, x) apart from over-all normalization, which is
specified later.

For brevity, we shall only give matrix elements ofR(u) defining the most fundamental
T1(u, x).

R±1/2,±1/2
`,` (u) = u + 1± 2` R`

′−`,`−`′
`′,` (u) =

√
(k + 2 + 2 min(`, `′))(k − 2 min(`, `′))

where`, `′ ∈ {−k/2 . . . , k/2} and|`− `′| = 1. Similar to (3), the correspondingR∨ matrix
has decomposition:

R∨(u) = (u + k + 1)Pk+1 + (u− k − 1)Pk−1. (13)

TheR-matrix forTj (u, x) is obtained from the above elementaryR(u) by j − 1 times fusion
in the auxiliary space. By the construction, arbitrary pairs in this hierarchy are commutative
if they share the sameu:

[Tj (u, x), Tj ′(u, x
′)] = 0.

This is a generalization of (11). In the following, we fixu for all QTMs and omit the dependency
on u. Due to the consequential commutativity, one needs not distinguish operatorsTj from
their eigenvalues.

Then the explicit eigenvalue of the most elementary transfer matrixT1(x) reads

T1(x) = φ+(x − (k − 1)i)φ−(x − (k + 1)i)eβH
Q(x + 2i)

Q(x)

+φ−(x + (k − 1)i)φ+(x + (k + 1)i)e−βH
Q(x − 2i)

Q(x)

φ±(x) := (x ± iu)N/2

Q(x) :=
m∏
j=1

(x − xj )

(14)

wherexj , (j = 1, . . . , m) denotes the solution to the Bethe ansatz equation:

φ−(xj + (k − 1)i)φ+(xj + (k + 1)i)

φ+(xj − (k − 1)i)φ−(xj − (k + 1)i)
= −e2βH Q(xj + 2i)

Q(xj − 2i)
.

The number of BAE roots,m, differs for different eigenstates generally, andm = Nk/2 for
the largest eigenvalue case.

By construction of the fusion hierarchy and from singularities of the intertwining operators
(13) by tentatively replacingk→ j , the following relation is valid:

Tj (x)T1(x − i(j + 1)) = Tj+1(x − i) + gj (x)Tj−1(x + i)

gj (x) = φ−(x − i(k + j + 2))φ−(x + i(k − j))φ+(x − i(j + k))φ+(x + i(k − j + 2)).
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From this, one can prove the important functional relation (T -system) by induction [36],

Tp(x + i)Tp(x − i) = fp(x) + Tp−1(x)Tp+1(x) (p > 1)

fp(x) :=
p∏
j=1

∏
σ=±

φσ (x + iσ(p − k − 2j + 1))φσ (x + iσ(k − p + 2j + 1)) (15)

andT0 = 1.
By substituting (14) into (15), we can successively obtainTp(x), (p > 2). Explicitly,

Tp(x) consists of a sum ofp + 1 terms,

Tp(x) :=
p+1∑
`=1

λ
(p)

` (x)

λ
(p)

` (x) := eβH(p+2−2`)ψ
(p)

` (x)
Q(x + i(p + 1))Q(x − i(p + 1))

Q(x + i(2`− p − 1))Q(x + i(2`− p − 3))

ψ
(p)

` (x) :=
p−`+1∏
j=1

φ−(x + i(p − k − 2j))φ+(x + i(p − k + 2− 2j))

×
`−1∏
j=1

φ−(x − i(p − k + 2− 2j))φ+(x − i(p − k − 2j)).

(16)

As has been noted,Tk(x) has a normalization trivially different fromTQTM(u, x) in the previous
section:

TQTM(u, x) = Tk(x)∏k
p=1 φ0(2ip)

φ0(x) := xN/2.
(17)

In the original problem of the spin-S chain, onlyTk(x) is of interest. The auxiliaryTj ,
however, make the evaluation ofTk(x) transparent, as is shown in the following.

4. Auxiliary functions and functional relations among them

To explore the analyticity of the transfer matrixTk(x), we introducek + 1 auxiliary functions.
The firstk − 1 functions{yj (x)} have been used in many works and have a sound basis in the
sl2 fusion hierarchy. They are defined by [36,37]

yj (x) := Tj−1(x)Tj+1(x)

fj (x)
j > 1.

The functional relations among them are sometimes referred to as theY -system:

yj (x + i)yj (x − i) = Yj−1(x)Yj+1(x) j > 1

Yj (x) := 1 +yj (x)
(18)

and y0(x) := 0 which is a consequence of equation (15). Note that theY -system is not
truncated to a finite set in this case. The(k − 1)th equation, which characterizesyk−1(x),
inevitably containsyk(x) in the rhs, and so on. Thus, another device is needed to construct a
finite set of auxiliary functions satisfying a complete and closed set of functional relations. The
remaining two functionsb(x), b̄(x) and their ‘relatives’B(x) := 1 +b(x), B̄(x) := 1 + b̄(x)

play this role. We define them by ratios ofλ in Tk(x) as,

b(x) := λ
(k)
1 (x + i) + · · · + λ(k)k (x + i)

λ
(k)
k+1(x + i)

b̄(x) := λ
(k)
2 (x − i) + · · · + λ(k)k+1(x − i)

λ
(k)
1 (x − i)

.

(19)
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The following relations are direct consequences of the above definitions:

B(x)λ
(k)
k+1(x + i) = e−kβHB(x)

∏
σ=±

k∏
j=1

φσ (x + (2j + σ)i)
Q(x − ik)

Q(x + ik)
= Tk(x + i)

B̄(x)λ
(k)
1 (x − i) = ekβH B̄(x)

∏
σ=±

k∏
j=1

φσ (x − (2j − σ)i) Q(x + ik)

Q(x − ik)
= Tk(x − i).

(20)

We havek−1 equations foryj , (j = 1, . . . , k−1) in terms ofYj (x), (j = 1, . . . , k−1),B(x)
andB̄(x). The firstk − 2 equations are chosen directly from theY -system. In the(k − 1)th
equation, we rewriteYk(x) in the rhs of theY -system (j = k−1 in (18)) byB(x)B̄(x), thanks
to (20), the definitions ofyk, Yk and the functional relation (15):

yk−1(x − i)yk−1(x + i) = Yk−2(x)B(x)B̄(x). (21)

Finally, equations forb in terms ofYj (x), (j = 1, . . . , k − 1),B(x) andB̄(x) are to be
found. By comparing explicit forms, one finds

b(x) = eβ(k+1)H
∏
σ=±

φσ (x + iσ)∏k
j=1 φσ (x + (2j + σ)i)

Q(x + i(k + 2))

Q(x − ik)
Tk−1(x)

b̄(x) = e−β(k+1)H
∏
σ=±

φσ (x + iσ)∏k
j=1 φσ (x − (2j − σ)i)

Q(x − i(k + 2))

Q(x + ik)
Tk−1(x).

(22)

Note thatTk−1(x) is presented byYk−1(x):

Tk−1(x − i)Tk−1(x + i) = fk−1(x)Yk−1(x) (23)

which originates directly from definitions ofyk−1, Yk−1 and the functional relation (15).
In what follows, we analyse these functional relations via the Fourier transformation. One

denoteŝdlb[q] to mean the Fourier transformation of the logarithmic derivative ofb(x):

d̂lb[q] :=
∫ ∞
−∞

d logb(x)

dx
eiqx dx

and similarly for other functions. With some assumptions of the analytic properties of
the auxiliary functions, the above functional relations can be transformed into algebraic
equations in the Fourier space. Roughly speaking, one can solved̂lQ[q] functions in terms
of d̂lB[q] and d̂lB̄[q] by deletingd̂lTk[q] from algebraic equations originated from (20).
Similarly d̂lTk−1[q] is solved byd̂lYk−1[q] from (23). Substituting these results into Fourier
transformations of logarithmic derivatives of (22), one finds expressions ofd̂lb[q], d̂lb̄[q] in
terms ofd̂lB[q], d̂lB̄[q] andd̂lYk−1[q]. After inverse-Fourier transformation and integration
over x, one obtains the desired finite set of equations. We will make the above-mentioned
analytic assumptions explicit and examine them in the next section.

Before going into details, let us discuss the physical interpretation of the above functions.
As is argued in [7], theS-matrix of excitations in the spin-S model factorizes into two pieces:
the spin-12 SU(2) S-matrix and the RSOSS-matrix ofsl2 level-k = 2S. This is consistent with
the general expectation that the underlying field theory is the level-k SU(2) WZWN model.
The latter is known to ‘decompose’ into Gaussian andZk parafermionic field theories [34].
One finds, see for instance [35], evidence for the equivalence between thesl2 RSOS model in
regime II and theZk parafermion field theory in the scaling limit. In the present description,
b, b̄ are to be identified with up- and down-spinons. As we will see later, only they couple
to the magnetic field directly. For theS = 1

2 case, there is further direct evidence for this
identification [51]. On the other hand,{yj (x)} are insensitive to the external field. We are
led to identifyyj (x) in our choice as the RSOS piece of the excitations. The RSOS model
possesses a subset of theY -system (18). The additional conditionyk = 0 for the model
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leads to the truncated set of equations amongk − 1 y [36, 38]. In the present problem, at
sufficiently low temperatures, one observes,|b|, |b̄| ∼ 0 for x << ln β. Thus the substitution
of B = B̄ = 1 in (21) might be legitimate in the vicinity of the origin. Then the resultant
approximatedY -system coincides with that of the RSOS model. In this sense, (21) represents
a gluing relation between spinon and RSOS parts of excitations.

5. Nonlinear integral equations

We derive the nonlinear integral equations among auxiliary functions introduced in the previous
section. The crucial observation is, that all nontrivial zeros and singularities of these functions
are determined by zeros ofQ(x) andTj (x), (j = 1, . . . , k). For the largest eigenvalue sector
of Tk(x), zeros ofQ(x) form so-calledk-strings. Imaginary parts of zeros are approximately
located at(k + 1)− 2`, ` = 1, . . . , k. For later use, we introduce the notations,

91(x) := Q(x − ik) 92(x) := Q(x + ik). (24)

Empirically, similar patterns are found for zeros ofTj (x): they distribute approximately on
lines, Imx = ±(k + j − 2`), ` = 0, . . . , j − 1. We assume that these observation from
numerics with fixedN is valid and that the deviations from lines are very small in the limit
N →∞. Then one deduces the following ansatz on the strips where auxiliary functions are
analytic, nonzero and have constant asymptotic behaviour (ANZC):

b(x),B(x) − 1< Im x 6 0

b̄(x), B̄(x) 06 Im x < 1

yj (x), Yj (x)(j = 1, . . . , k − 1) Tp(x), (p = 1, . . . , k) − 16 Im x 6 1

91(x) Im x < 0

92(x) Im x > 0.

We find it convenient to shift the definition of the arguments inb,B, b̄ and B̄. To avoid
confusion, these new functions are denoted asa etc,

a(x) := b(x − iγ ) ā(x) := b̄(x + iγ )

and similarly for capital functions. Here 0< γ < 1
2 is an arbitrary but fixed parameter. Note

that this is equivalent to adopt small shifts in the definition of the integration contours for the
Fourier transformation. Due to the ANZC properties ofb, b̄, such modifications are almost
trivial in the Fourier space.

Having identified ANZC strips, we revisit equations (20). Consider the integral,∫
C

d

dz
logTk(z)e

iqz dz

whereC encircles the edges of ‘square’: [−∞− i,∞− i] ∪ [∞− i,∞ + i] ∪ [∞ + i,−∞ +
i] ∪ [−∞+ i,−∞− i] in counterclockwise manner. Due to the ANZC property ofd

dz logTk(z)
insideC, the following equation is valid from Cauchy’s theorem:

0=
∫ ∞
−∞

d

dx
logTk(x − i)eiq(x−i) dx −

∫ ∞
−∞

d

dx
logTk(x + i)eiq(x+i) dx.

One substitutes equations (20), rewritten in terms of91,2(x),A(x), Ā(x), into the above
equation and derives identities amongd̂l91,2[q], d̂lA[q], d̂lĀ[q],

d̂l91[q < 0] = 0

d̂l91[q > 0] = e(1−γ )q

2 coshq
d̂lĀ[q] − e−(1−γ )q

2 coshq
d̂lA[q] + π iN

e−kq sinhkq cosh(1 +u)q

coshq sinhq
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d̂l92[q < 0] = − e(1−γ )q

2 coshq
d̂lĀ[q] +

e−(1−γ )q

2 coshq
d̂lA[q] − π iN

ekq sinhkq cosh(1 +u)q

coshq sinhq

d̂l92[q > 0] = 0

and d̂l91[q = 0] = −d̂l92[q = 0] = πNki. Similarly, one can derive an identity for
d̂lyj [q] and d̂lYj [q] from (18), andd̂lTk−1[q] and d̂lYk−1[q] from (23). Substituting these
relations into the original definitions ofa andā, we obtaink + 1 algebraic relations in Fourier
space. (Remember91,2(x) are related toQ(x) by (24).) After taking the inverse Fourier
transformation and integrating overx once, we arrive at thek + 1 coupled nonlinear integral
equations: 

logy1(x)
...

logyk−1(x)

loga(x)

log ā(x)

 =


0
...

0
βH + d(u, x − iγ )
−βH + d(u, x + iγ )

 +K ∗


logY1(x)

...

logYk−1(x)

logA(x)

log Ā(x)

 (25)

where(K ∗ g)i denotes the matrix convolution
∑

j

∫
Ki,j (x − y)(g(y))j dy and the ‘driving’

functiond(u, x) reads

d(u, x) = N

2

∫
sinhuq

q coshq
e−iqx dq.

The integration constants (±βH ) are fixed by comparing asymptotic values (|x| → ∞) of
both sides.

Explicitly the kernel matrix is given by

K(x) :=



0 K(x) 0 · · · 0 0 0 0
K(x) 0 K(x) · · · 0 0

0 K(x) 0 0
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

0 · · · 0 K(x) 0 0
0 K(x) 0 K(x + iγ ) K(x − iγ )
0 · · · 0 K(x − iγ ) F (x) −F(x + 2i(1− γ ))
0 · · · 0 K(x + iγ ) −F(x − 2i(1− γ )) F (x)


(26)

where

K(x) := 1

4 coshπx/2

F(x) := 1

2π

∫ ∞
−∞

e−|q|−iqx

2 coshq
dq.

Tk, in terms of these auxiliary functions, can be derived similarly. Technically, we find it
convenient to introduce

T Rk (x) := Tk(x)∏k
p=1 φe(p)(x − 2i(k + 1− p))φe(p+1)(x + 2i(k + 1− p)) (27)

ande(p) = +(−) for p = even (odd). Then the product of two equations in (20) leads to a
simple algebraic relation:

T Rk (x − i)T Rk (x + i) =
B(x)B̄(x) for k even

B(x)B̄(x)
φ−(x + i)φ+(x − i)

φ−(x − i)φ+(x + i)
for k odd.

(28)
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From the ANZC property of both sides of (28) in appropriate strips, the logarithmic derivative
of them reduces to a simple algebraic equation in Fourier space. Taking account of the
normalization (17) and (27), we have

log3QTM(u, x) = log3(0)
QTM(u, x) +

∫
logA(y)

4 coshπ/2(x − y + iγ )
dy

+
∫

log Ā(y)

4 coshπ/2(x − y − iγ )
dy (29)

log3(0)
QTM(u, x) := −δk=1(mod2)

N

2

∫
e−iqx−|q| sinhuq

q coshq
dq

+
k∑

p=1

log

{
φe(p)(x − 2i(k + 1− p))φe(p+1)(x + 2i(k + 1− p))

φ0(2ip)2

}
. (30)

Finally put u = −βJ/N and sendN → ∞ analytically. This merely amounts to
replacements:

d(u, x)→ D(x) = − βJπ

2 coshπ/2x

log3(0)
QTM(u, x = 0)→−βe0 = −βJ

2

k∑
j=1

(−1)k−j

j
+ δk=1(mod2)βJ log 2.

(31)

Note thate0 coincides with the known ground state energy [2] after a trivial shift which stems
from the difference in the normalization ofR∨. Thek + 1 coupled nonlinear integral equations
and log3QTM do not carry the fictitious parameterN any longer. They efficiently describe the
thermodynamics of the solvable spin-S XXX model. For an illustration, the specific heat for
S = 1

2, 1, 3
2 is evaluated for a wide range of temperature and plotted in figure 6. Each curve

is produced by a 10–30 min CPU time calculation on a Micro Sparc work station. In the next
section, we derive the low-temperature properties using (25), (30) and (31).

6. Analytic evaluation of the low-temperature asymptotics

We considerT → 0 for the vanishing magnetic field. In a sufficiently low-temperature
regime,a, logA shows a sharp crossover behaviour like a step function:|a|, | logA| � 1 for
|x| < 2

π
logπβJ and|a|, | logA| = O(1) for |x| > 2

π
logπβJ . Thus the following scaling

functions [23] control the asymptotic behaviour:

la±(ξ) := loga

(
± 2

π
(ξ + logπβJ )

)
lA±(ξ) := logA

(
± 2

π
(ξ + logπβJ )

)
lā±(ξ) := log ā

(
± 2

π
(ξ + logπβJ )

)
lĀ±(ξ) := log Ā

(
± 2

π
(ξ + logπβJ )

)
ly±p (ξ) := logyp

(
± 2

π
(ξ + logπβJ )

)
lY±p (ξ) := logYp

(
± 2

π
(ξ + logπβJ )

)
.

(32)

In terms of these scaling functions, NLIE are expressed by,
ly±1 (ξ)
...

ly±k−1(ξ)

la±(ξ)
lā±(ξ)

 =


0
...

0
−e−ξ±iγπ/2

−e−ξ∓iγπ/2

 + K̄ ∗


lY±1 (ξ)
...

lY±k−1(ξ)

lA±(ξ)
lĀ±(ξ)


K̄(ξ) = 2

π
K
(

2ξ

π

)
.

(33)
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Figure 6. Specific heats forS = 3
2 , 1 and1

2 from top to bottom.

Note that neglect of small corrections∼O(T ) leads to the decoupling equations for±.
The thermal contribution (the second and the third term in (30)) to limN→∞ log3QTM(u =

− βJ

N
, x) reads,

eπx/2

π2βJ

[
eiγπ/2

∫
e−ξ lA+ dξ + e−iγπ/2

∫
e−ξ lĀ+ dξ

]
+

e−πx/2

π2βJ

[
e−iγπ/2

∫
e−ξ lA− dξ + eiγπ/2

∫
e−ξ lĀ− dξ

]
.

(34)

The crucial observation in [23] is that one needs not solve (33) to evaluate (34) provided that
the kernel matrix function satisfies a symmetry,Ki,j (x − y) = Kj,i(y − x). This property is
valid in the present case. See (26).

We defineF± by

F± :=
∫ ∞
−∞

k−1∑
p=1

[(
d

dξ
ly±p

)
lY±p −

(
d

dξ
lY±p

)
ly±p

]
dξ +

∫ ∞
−∞

[(
d

dξ
la±

)
lA±

+

(
d

dξ
lā±

)
lĀ± −

(
d

dξ
lA±

)
la± −

(
d

dξ
lĀ±

)
lā±

]
dξ. (35)

Then the trick in [23] is as follows. First, take the derivative of both sides of (33) and multiply
them by a row vector:

(lY±1 (ξ), . . . , lY
±
k−1(ξ), lA

±(ξ), lĀ±(ξ)). (36)

We call the resultant equality (A). Second, multiply both sides of (33) by the derivative of the
row vector (36), which is referred to as (B). Finally, subtract both sides of (A) and (B), and
integrate overξ . Then the lhs of the resultant equality is simplyF±. Remarkably, the most
complicated terms in the rhs, such as∫

dξ dξ ′ lY +
i (ξ )

dK̄i,j (ξ − ξ ′)
dξ

lY +
j (ξ
′)
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and

−
∫

dξ dξ ′
d

dξ
lY +
j (ξ)K̄j,i(ξ − ξ ′)lY +

i (ξ
′)

cancel each other. To be precise, the first integral can be converted step by step,

= −
∫

dξ dξ ′ lY +
i (ξ )

dK̄i,j (ξ − ξ ′)
dξ ′

lY +
j (ξ
′)

= −
∫

dξ dξ ′ lY +
i (ξ )

dK̄j,i (ξ ′ − ξ)
dξ ′

lY +
j (ξ
′)

=
∫

dξ dξ ′ lY +
i (ξ )K̄j,i(ξ ′ − ξ)

d

dξ ′
lY +
j (ξ
′)

=
∫

dξ dξ ′
d

dξ
lY +
j (ξ)K̄j,i(ξ − ξ ′)lY +

i (ξ
′)

where the symmetry of the kernel matrix, partial integration and the change of integration
variablesξ ↔ ξ ′ are used.

Similar cancellation happens for other terms and the following equality results:

F± = 2
∫

[e−ξ±iγπ/2lA± + e−ξ∓iγπ/2lĀ±] dξ. (37)

The first thermal correction (34) is thus given by

eπx/2F+

2π2βJ
+

e−πx/2F−
2π2βJ

. (38)

To evaluateF± explicitly, one rewrites the integration variable fromξ toa, ā, yp. For example,
the first summation term inF± is transformed to
k−1∑
p=1

∫ y±p (∞)

y±p (−∞)
dy

(
log(1 +y)

y
− logy

1 +y

)
= 2

k−1∑
p=1

{L+(y
±
p (∞))− L+(y

±
p (−∞))}

and similarly for others.L+(x) is a dilogarithm function and is related to Rogers’ dilogarithm
functionL(x) byL+(x) = L(x/(1 +x)):

L+(x) := 1

2

∫ x

0

(
log(1 +y)

y
− logy

1 +y

)
dy

L(x) := −1

2

∫ x

0

(
log(1− y)

y
+

logy

1− y
)

dy
. (39)

The asymptotic values of scaling functions are easily extracted. Forx →∞, a± coincides
with original b. Thus, one derives the limiting value by its definition (19) in terms ofλ(k)p .
Similarly for y±p (∞). Forx → −∞, one should rather consult (33). We send the argument
x →−∞ in both sides and solve the resultant algebraic equations. The results are summarized
as:

a±(−∞) = ā±(−∞) = 0 a±(∞) = ā±(∞) = k
y±p (−∞) =

sin πp

k+2 sin π(p+2)
k+2

sin2 π
k+2

16 p 6 k − 1

y±p (∞) = p(p + 2) 16 p 6 k − 1.

(40)

With these pieces of information,F± is now given by

F+ = F− = 2
k−1∑
p=1

[
L

(
p(p + 2)

(p + 1)2

)
− L

(
sin πp

k+2 sin π(p+2)
k+2

sin2 π(p+1)
k+2

)]
+ 4L

(
k

1 + k

)
.
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Finally we use three relations [39]:

L(1) = L(x) +L(1− x) = π2

6
x ∈ [0, 1]

2L(1) = 2L

(
1

n + 1

)
+
n−1∑
j=0

L

(
1

(1 + j)2

)
n ∈ Z>0

L(1)
3n

n + 2
=

n−1∑
j=0

L

(
sin2 π

n+2

sin2 π(j+1)
n+2

)
n ∈ Z>0

which yield the neat result

F± = π2k

k + 2
.

Thus we conclude the low-temperature asymptotics of the free energy:

f ∼ e0 − π

6vsβ2
c(k) c(k) = 3k/(k + 2) (41)

wherevs = Jπ/2 coincides with the known spin velocity [40] andc(k) is simply the central
charge of the level-k SU(2) WZWN model. This is the desired result from the WZWN
description of massless quantum spin chains. We remark that the final part of the calculation
is quite parallel to that in [11] utilizing the same dilogarithm function identities. There the
spin-S XXZ model is discussed via the standard string approach at ‘root of unity’ where the
number of strings is truncated finitely from the beginning.

7. Spinon characters

The character formulae obviously depend on the base of the space. Recently, the quasi-
particle representation has attracted much attention in the context of the long-range interacting
model [24, 41, 42], spectral decomposition of path space in lattice models [9], and in the
statistical interacting picture of Bethe ansatz solvable models [43–47]. See also [48, 49]
for different view points. For the spin-1

2 case, it has been recently shown that the novel
thermodynamics formulation yields a natural spinon character and that such a character formula
is generalized tôsl(n)k=1 [51]. Thus it is tempting to find analogues forŝl(n)k=2S . The results
given in the previous sections provide the first step for the simplestn = 2 case as discussed
below. Note that we consider ‘chiral-half’, such that the only positive contributions (sayF+ )
in the previous section are taken into account.

The character needs the description of all excited states. In the present context, this
information might be encoded in the additional zeros ofa, ā, y and their capitals in their
‘physical strips’. Indeed, some low excitations are identified in such a way [16, 18], and
corresponding excited state TBAs are derived. Such an analysis is of considerable interest,
however it requires extensive numerical efforts. We leave it as a future problem and make a
short-cut detour here employing the strategy in [50].

The central charge is described by the dilogarithm function of which the integration contour
is simple. On the other hand, one can define an analytically continued dilogarithm function
LC(z). This is established by adopting general contourC for the integration contour of the
dilogarithm function. We then generalize a successful observation from specific examples; all
excitation spectra, or effective central chargeceff , in the conformal limit shall be described
by LC(z). Namely, the replacement of a simple contour in the integral representation of the
dilogarithm function by a complex one leads to an excited state. Regardingceff as a function
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Figure 7. A contourC[f−, f+|{2}|{−1, 1}].

of LC(z), the summation ofq−ceff/24 over a certain set ofC is thus expected to reproduce affine
characters. (Readers should not confuse this formal variableq, the standard notation in this
field, with the Fourier variable used in previous sections.)

Let us be more precise. ByC we denote a contour starting fromf− and terminating atf+,
such that it first crosses [1,∞) η1(6= 0) times then crosses(−∞, 0] ξ1 times then againη2 times
w.r.t. [1,∞) and so on. The intersections are counted as +1(−1) if the contour goes across
the cut [1,∞) in the counterclockwise (clockwise) manner and(−∞, 0] in the clockwise
(counterclockwise) manner. (Note that this definition is slightly different from [50, 51].) We
denote this byC[f−, f+|{ξ1, ξ2, . . .}|{η1, η2, . . .}]. The set of contours are parametrized by
S = {C[f (p)− , f

(p)
+ |ξ (p)1 , . . . , |η(p)1 , . . . , ]}, wheref (p)± = y+

p(±∞)/Y +
p (±∞), (16 p 6 k−1),

f
(k)
+ = a+(∞)/A+(∞), f (k+1)

+ = ā+(∞)/Ā+(∞) andf (k)− = f (k+1)
− = 0.

In the absence of additional zeros of auxiliary functions in the ‘physical strip’, we have

0= log(f (p)+ )−
∑
p′

gp,p′ log(1− f (p′)+ ) (42)

where the ‘statistical interaction’ matrixg is related to the zero mode of the Fourier
transformation of the kernel matrix (26) by

g = I − K[q = 0]. (43)

This is the situation we have treated in previous sections, and (42) follows from (33). One
replaces log in (42) by an analytically continued one, logC(z) in excited states:

π iD(p) = logC(p) (f
(p)
+ )−

∑
p′

gp,p′ logC(p′) (1− f (p
′)

+ ) (44)

where logC(p) (f
(p)
+ ) = log(f (p)+ ) − 2π i

∑
` ξ

(p)

` and so on. HereD(p) is introduced for
consistency of both sides, and is interpreted as ‘chemical potential’ [50]. On the other hand,
D(p) should originate from the zeros of the auxiliary functions in the physical strips. One may
be able to prove that suchD(p) actually agree with ones in (44), in principle. Though such a
microscopic derivation has yet to be performed, we assume the coincidence in the following.

The excitation spectrum is solely implemented in the effective central chargeceff(S):

ceff(S) = 6

π2

∑
p

(
LC(p) (f

(p)
− , f

(p)
+ )− π i

2
D(p) logC(p) (1− f (p)+ )

)
. (45)

HereD(p) term is included by hand, so as to match its interpretation as chemical potential [50].
LC is given by

LC(f−, f+) = −1

2

∫
C

(
logC(1− z)

z
+

logC(z)

1− z
)

dz (46)

for a pathC from f− to f+.
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Figure 8. Young diagramsYD(p) of n(p) = 3 corresponding to a set of winding numbers:
{ξ} = {1, 1, 1}, {η} = {1, 1, 2} (left), {ξ} = {1, 1, 1}, {η} = {0, 1, 1} (middle) and{ξ} =
{1, 1, 1}, {η} = {1, 1, 0} (right). Arrows are included as a guide to the eye. The diagram on
the far rhs is termed ‘with tail’ in the text.

After straightforward manipulations, one finds [50],

LC(p) (f
(p)
− , f

(p)
+ ) = L(f (p)+ )− L(f (p)− )− π i

∑
`

ξ
(p)

` log(1− f (p)+ )− π i
∑
`

η
(p)

` log(f (p)+ )

+2π2

(∑
`

ξ
(p)

`

)(∑
`

η
(p)

`

)
− 4π2

∑
`

ξ
(a)
` (η

(a)
1 + · · · + η(a)` ). (47)

RememberL(z) is defined in (39). The substitution of (47) in (45), using (44) and the definitions
of logC(p) leads to a remarkable result:ceff can only be written in terms ofc(k) (see (41)),{ξ (p)` }
and{η(p)` },

ceff(S) = c(k)− 24T (S) T (S) = 1

2
tngn +

k+1∑
a=1

∑
`>1

ξ
(a)
` (η

(a)
1 + · · · + η(a)` )

tn = (n(1), . . . , n(k+1))

(48)

wheren(p) = ∑
` η

(p)

` . Note that the explicit forms ofD(p) are not needed in the above
transformation.

In the following, we shall argue that the summation ofq−ceff over some subsetO of all
possible contours reproduce the character chj (z, q) of the levelk WZWN model with spin-j
(j = some fixed integer or half-integer).

We present necessary conditions for suchO below.

• η andξ are non-negative.

Such a path can be parametrized by

C[f (p)− , f
(p)
+ |ξ (p)1 , . . . , ξ

(p)

n(p)
| 1, . . . ,1︸ ︷︷ ︸

n(p)

]

andξ (p)` > 0, (p = 1, . . . , n(p)).

• Forp = k, k + 1, we requiren
(k)+n(k−1)

2 − j ∈ Z>0 in addition.

• Forp 6 k − 1, ξ (p)
n(p)
> 1.

Graphically, one can associate a Young diagramYD(p) to a set of winding numbers:
{ξ (p)` }, {η(p)` } (or a Young diagram with tail for some cases inp = k, k + 1). First draw a
line of length 1 downwards. Next draw a line of lengthξ (p)1 to the left. Then draw a line of
length 1 downwards again. We continue this proceduren(p) times. Finally draw a horizontal
line from the starting point to the left and also draw a vertical line from the end point upwards.
See figure 8. Obviously, the number of boxes in the diagram is equal to the second term in
T (S).

We allow for contours which are isomorphic to a set of Young diagramsYD(p), (p =
1, . . . k − 1) such that
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• n(k−2p+1) = odd,n(k−2p) = even.
• By the definition, the depth ofYD(p) is n(p). The width is restricted by the maximum

valuew(p)max which is determined by depths of ‘adjacent’ diagrams:

w(p)max= 1
2(n

(p−1) + n(p+1) − 2n(p) + δ2j,k−p) (p = 1, . . . , k − 2)

for the fixed j and n(0) = 0. The casep = k − 1 is exceptional: w(k−1)
max =

1
2(n

(k−2) + n(k) + n(k+1) − 2n(k−1) + δj,1/2).

Under the above restrictions onO, we find

q−1(j)+j/2chj (z, q) =
∑
S∈O

q−ceff (S)/24z(n
(k)−n(k+1))/2

=
∑

n(k),n(k+1)>0

q−(n
(k)+n(k+1))2/49n(k)+n(k+1)

Ak
(uj ; q)Sn(k),n(k+1) (z; q).

SM,N(z; q) stands for contributions from(M,N) spinons:

SM,N(z; q) = 1

(q)M(q)N
z(M−N)/2

resulting from summations over ‘nodes’ξ (p)` > 0, ` = 1, . . . , n(p) andp = k, k + 1. Ak is the
Cartan matrix forslk+1 and9Ak denotes

9
m1
Ak
(uj ; q) =

∑
m2,m3,...,mk

q1/4m·Akm
k∏
i=2

[
1
2((2− Ak) ·m + uj )i

mi

]
and(uj )i = δi,2j+1. The summations are taken over odd (even) positive integers formeven(odd).
Note we redefinen(k−`) = m`+1, 16 ` 6 k − 1. The appearance of the Gaussianq-binomial
usually originates from combinatorics on the truncated Bratteli diagram and is the reminiscence
of the RSOS model. Here the origin is also simple. It comes from the restriction on the width
of Young diagrams. We denote the number of boxes in a Young diagramYD(p) by b(p). For
fixed{n(a)}, T (S) assumes the same value for diagrams having identicalb(p). This multiplicity
is given byp(n(p), w(p)max, b

(p)) = the number of partition ofb(p) into at mostw(p)max part, each
6 n(p). Thanks to the generating relation∑
b(p)

p(n(p), w(p)max, b
(p))qb

(p) =
[
n(p) +w(p)max

n(p)

]
=
[
(n(p−1) + n(p+1) + δp,k−2j )/2

n(p)

]
we obtain the product of Gaussianq-binomial equivalent to the one in9m1

Ak
(u; q).

Our result implies that the Hilbert space of the level-k SU(2)WZWN model is isomorphic
to a part of homotopy space of Rogers’ dilogarithm function. We believe that this provides a
novel interesting view point in the prototype of CFT and deserves further examinations.

8. Summary and discussion

In this paper, we formulate a novel description of the thermodynamics of solvable spin-S

XXX models. The suitable choices of auxiliary functions yield a natural generalization of
the strategy in [23]. The nonlinear integral equations close finitely, which differs clearly from
the string formulation [2] and is obviously efficient in numerics. The resultant formulation
has an interpretation in terms of physical excitations, spinons and RSOS kinks. This has been
demonstrated by the calculation of the low-temperature specific heat as well as the spinon
character formula. The latter, however, is derived under several assumptions on the possible
homotopy class ofLC . Certainly these constraints on winding numbers have ‘microscopic’
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origins in patterns of zeros ofy− (or T ) functions. This has actually been demonstrated for a
few cases: the superintegrable 3-state chiral Potts model [52] and the simplest case ofsl2 RSOS
models with open boundaries [53]. We hope to report on extensive numerical investigations
on zeros in the present context in the near future.

Finally, we mention spinon pictures of different view points [54–56], where explicit
‘spinon’ bases have been constructed by vertex operators. Thus, the meaning of ‘spinon’
is more transparent than in our approach. Less obvious is their concrete relation to eigenstates
of spin Hamiltonians. The method also involves an uncontrolled approximation, a truncation
procedure, in evaluating the partition function as well as ‘one body’ distribution functions.
This contrasts to the present approach which involves no approximation. In a sense they are
complementary, and their relations are to be explored.
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[14] Jüttner G, Kl̈umper A and Suzuki J 1997Nucl. Phys.B 487650
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